Temporal Platform security features
This guide is a work in progress. Some sections may be incomplete. Information may change at any time.
For information about the general security habits of Temporal Technologies see our company security page.
The Temporal Plaform is designed with security in mind, and there are many features that you can use to keep both the Platform itself and your user's data secure.
A secured Temporal Server has its network communication encrypted and has authentication and authorization protocols set up for API calls made to it. Without these, your server could be accessed by unwanted entities.
What is documented on this page are the built-in opt-in security measures that come with Temporal. However users may also choose to design their own security architecture with reverse proxies or run unsecured instances inside of a VPC environment.
Server Samples
The https://github.com/temporalio/samples-server repo offers two examples, which are further explained below:
- TLS: how to configure Transport Layer Security (TLS) to secure network communication with and within a Temporal cluster.
- Authorizer: how to inject a low-level authorizer component that can control access to all API calls.
Encryption in transit with mTLS
Temporal supports Mutual Transport Layer Security (mTLS) as a way of encrypting network traffic between the services of a cluster and also between application processes and a Cluster. Self-signed or properly minted certificates can be used for mTLS. mTLS is set in Temporal's TLS configuration. The configuration includes two sections such that intra-Cluster and external traffic can be encrypted with different sets of certificates and settings:
internode
: Configuration for encrypting communication between nodes in the cluster.frontend
: Configuration for encrypting the Frontend's public endpoints.
A customized configuration can be passed using either the WithConfigTemporal Server options
You can run the Temporal Server as a Go application by including the server package go.temporal.io/server/temporal
and using it to create and start a Temporal Server.
Learn more or WithConfigLoaderTemporal Server options
You can run the Temporal Server as a Go application by including the server package go.temporal.io/server/temporal
and using it to create and start a Temporal Server.
Learn more Server options.
See TLS configuration reference for more details.
Authentication
There are a few authentication protocols available to prevent unwanted access such as authentication of servers, clients, and users.
Servers
To prevent spoofing and MITM attacks you can specify the serverName
in the client
section of your respective mTLS configuration.
This enables established connections to authenticate the endpoint, ensuring that the server certificate presented to any connecting Client has the appropriate server name in its CN property.
It can be used for both internode
and frontend
endpoints.
More guidance on mTLS setup can be found in the samples-server
repo and you can reach out to us for further guidance.
Client connections
To restrict a client's network access to cluster endpoints you can limit it to clients with certificates issued by a specific Certificate Authority (CA).
Use the clientCAFiles
/ clientCAData
and requireClientAuth
properties in both the internode
and frontend
sections of the mTLS configuration.
Users
To restrict access to specific users, authentication and authorization is performed through extensibility points and plugins as described in the Authorization section below.
Authorization
Temporal offers two plugin interfaces for implementing API call authorization:
- `ClaimMapper`What is a ClaimMapper Plugin?
The Claim Mapper component is a pluggable component that extracts Claims from JSON Web Tokens (JWTs).
Learn more - `Authorizer`What is an Authorizer Plugin?
undefined
Learn more
The authorization and claim mapping logic is customizable, making it available to a variety of use cases and identity schemes. When these are provided the frontend invokes the implementation of these interfaces before executing the requested operation.
See https://github.com/temporalio/samples-server/blob/main/extensibility/authorizer for a sample implementation.
Single sign-on integration
Temporal can be integrated with a single sign-on (SSO) experience by utilizing the ClaimMapper
and Authorizer
plugins.
The default JWT ClaimMapper
implementation can be used as is or as a base for a custom implementation of a similar plugin.
Temporal Web
To enable SSO for the Temporal Web UI edit the web service's configuration per the Temporal Web README.
Plugins
Temporal Clusters support some pluggable components.
Claim Mapper
The Claim Mapper component is a pluggable component that extracts Claims from JSON Web Tokens (JWTs).
This process is achieved with the method GetClaims
, which translates AuthInfo
structs from the caller into Claims
about the caller's roles within Temporal.
A Role
(within Temporal) is a bit mask that combines one or more of the role constants.
In the following example, the role is assigned constants that allow the caller to read and write information.
role := authorization.RoleReader | authorization.RoleWriter
GetClaims
is customizable and can be modified with the temporal.WithClaimMapper
server option.
Temporal also offers a default JWT ClaimMapper
for your use.
A typical approach is for ClaimMapper
to interpret custom Claims
from a caller's JWT, such as membership in groups, and map them to Temporal roles for the user.
The subject information from the caller's mTLS certificate can also be a parameter in determining roles.
AuthInfo
AuthInfo
is a struct that is passed to GetClaims
. AuthInfo
contains an authorization token extracted from the authorization
header of the gRPC request.
AuthInfo
includes a pointer to the pkix.Name
struct.
This struct contains an x.509 Distinguished Name from the caller's mTLS certificate.
Claims
Claims
is a struct that contains information about permission claims granted to the caller.
Authorizer
assumes that the caller has been properly authenticated, and trusts the Claims
when making an authorization decision.
Default JWT ClaimMapper
Temporal offers a default JWT ClaimMapper
that extracts the information needed to form Temporal Claims
.
This plugin requires a public key to validate digital signatures.
To get an instance of the default JWT ClaimMapper
, call NewDefaultJWTClaimMapper
and provide it with the following:
- a
TokenKeyProvider
instance - a
config.Authorization
pointer - a logger
The code for the default ClaimMapper
can also be used to build a custom ClaimMapper
.
Token key provider
A TokenKeyProvider
obtains public keys from specified issuers' URIs that adhere to a specific format.
The default JWT ClaimMapper
uses this component to obtain and refresh public keys over time.
Temporal provides an rsaTokenKeyProvider
.
This component dynamically obtains public keys that follow the JWKS format.
rsaTokenKeyProvider
uses only the RSAKey
and Close
methods.
provider := authorization.NewRSAKeyProvider(cfg)
KeySourceURIs
are the HTTP endpoints that return public keys of token issuers in the JWKS format.
RefreshInterval
defines how frequently keys should be refreshed.
For example, Auth0 exposes endpoints such as https://YOUR_DOMAIN/.well-known/jwks.json
.
By default, "permissions" is used to name the permissionsClaimName
value.
Configure the plugin with config.Config.Global.Authorization.JWTKeyProvider
.
JSON Web Token format
The default JWT ClaimMapper
expects authorization tokens to be formatted as follows:
Bearer <token>
The Permissions Claim in the JWT Token is expected to be a collection of Individual Permission Claims. Each Individual Permission Claim must be formatted as follows:
<namespace> : <permission>
These permissions are then converted into Temporal roles for the caller. This can be one of Temporal's four values:
- read
- write
- worker
- admin
Multiple permissions for the same Namespace are overridden by the ClaimMapper
.
Example of a payload for the default JWT ClaimMapper
{
"permissions":[
"system:read",
"namespace1:write"
],
"aud":[
"audience"
],
"exp":1630295722,
"iss":"Issuer"
}
Authorizer Plugin
The Authorizer
plugin contains a single Authorize
method, which is invoked for each incoming API call.
Authorize
receives information about the API call, along with the role and permission claims of the caller.
Authorizer
allows for a wide range of authorization logic, including call target, role/permissions claims, and other data available to the system.
Configuration
The following arguments must be passed to Authorizer
:
context.Context
: General context of the call.authorization.Claims
: Claims about the roles assigned to the caller. Its intended use is described in theClaims
section earlier on this page.authorization.CallTarget
: Target of the API call.
Authorizer
then returns one of two decisions:
DecisionDeny
: the requested API call is not invoked and an error is returned to the caller.DecisionAllow
: the requested API call is invoked.
Authorizer
allows all API calls pass by default. Disable the nopAuthority
authorizer and configure your own to prevent this behavior.
Configure your Authorizer
when you start the server via the temporal.WithAuthorizer
Temporal Server options
You can run the Temporal Server as a Go application by including the server package go.temporal.io/server/temporal
and using it to create and start a Temporal Server.
Learn more server option.
If an Authorizer
is not set in the server options, Temporal uses the nopAuthority
authorizer that unconditionally allows all API calls to pass through.
a := authorization.NewDefaultAuthorizer()
Authorize API calls
When authentication is enabled, you can authorize API calls made to the Frontend Service.
- Go
- Java
- PHP
- Python
- TypeScript
Content is planned but not yet available.
The information you are looking for may be found in the legacy docs.
The Temporal Server expects an authorization
gRPC header with an authorization token to be passed with API calls if requests authorization is configured.
Authorization Tokens may be provided to the Temporal Java SDK by implementing a io.temporal.authorization.AuthorizationTokenSupplier
interface.
The implementation should be used to create io.temporal.authorization.AuthorizationGrpcMetadataProvider
that may be configured on ServiceStub gRPC interceptors list.
The implementation is called for each SDK gRPC request and may supply dynamic tokens.
JWT
One of the token types that may be passed this way are JWT tokens. Temporal Server provides a default implementation of JWT authentication.
Example
AuthorizationTokenSupplier tokenSupplier =
//your implementation of token supplier
() -> "Bearer <Base64 url-encoded value of the token for default JWT ClaimMapper>";
WorkflowServiceStubsOptions serviceStubOptions =
WorkflowServiceStubsOptions.newBuilder()
//other service stub options
.addGrpcMetadataProvider(new AuthorizationGrpcMetadataProvider(tokenSupplier))
.build();
WorkflowServiceStubs service = WorkflowServiceStubs.newServiceStubs(serviceStubOptions);
WorkflowClient client = WorkflowClient.newInstance(service);
Related read:
Content is planned but not yet available.
The information you are looking for may be found in the legacy docs.
Content is planned but not yet available.
The information you are looking for may be found in the legacy docs.
Content is planned but not yet available.
The information you are looking for may be found in the legacy docs.
Data Converter
Each Temporal SDK provides a Data ConverterWhat is a Data Converter?
A Data Converter is a Temporal SDK component that serializes and encodes data entering and exiting a Temporal Cluster.
Learn more that can be customized with a custom Payload CodecWhat is a Payload Codec?
A Payload Codec transforms an array of Payloads into another array of Payloads.
Learn more to encode and secure your data.
For details on what data can be encoded, how to secure it, and what to consider when using encryption, see Data encryption.
Codec Server
You can use a Codec ServerWhat is a Codec Server?
A Codec Server is an HTTP server that uses your custom Payload Codec to encode and decode your data remotely through endpoints.
Learn more with your custom Payload Codec to decode the data you see on your Web UI and CLI locally through remote endpoints.
However, ensure that you consider all security implications of remote data encodingWhat is remote data encoding?
Remote data encding is using your custom Data Converter to decode (and encode) your Payloads remotely through endpoints.
Learn more before using a Codec Server.
For details on how to set up a Codec Server, see Codec Server setup.